while true; do campaign.py; done

Javier Rojas Balderrama & Matthieu Simonin

March 27, 2019

Previously in XUG G5K: The massively parallel case

Experimental loop

Oparallel
for parameter in parameters:
bench (parameter)

m bench(p) launches one process
m bench(p) and bench(p') are independents
— You can defer most of the experimentation logic to the batch scheduler and go for a

parallel execution.
Ideal case: one (idempotent besteffort) job per parameter.

The not so massively parallel case

Experimental loop

@parallel -> sequential
for parameter in parameters:
bench(parameter)

m bench(p) launches a set of processes (10, 100, ...)
m Processes aren't independents

m Configuration dependency. e.g. procl needs to know the ip of the machine where
proc?2 is launched
m Runtime dependency. e.g. procl starts only if proc2 is reachable

— this could still fit the MP case. But sometimes:

m bench(p) is taking a significant resources (time and space)

m bench(p) and bench(p') aren’t independents.

Today's XUG G5K Use Case

General question

Impact of the geo-distribution over the communication bus of a laaS

Synthetic benchmark: Isolated bus communication layer

Operational benchmark: OpenStack internal messaging at the Edge

Synthetic evaluation: overview

commands

sys. metrics

deployment

<
app. metrics D

server J

controller

Buses: RabbitMQ, Apache
Qpid-dispatch-router
Clients: 1000 to 10000
Servers: 20 to 10000

m Messages: up to 300000

RPC patterns: anycast,
unicast, multicalst

Bus configuration: 3 to 5
brokers/routers

Latency: 0 to 100ms
Packets loss: 0 to 2%

Operational evaluation: overview

Keystone

|
1
Horizon |
i

Sone 1
|
Nova (control) '
1

Neutron (control)

full-fledged OpenStack
100 to 400 computes at the edge

10 Rally scenarios (nova and neutron)
latency from Oms to 200ms RTT

m loss from 0 to 2%

n
]

periodic network dropout (different
level of aggressivity)

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

J

1 1
! [Nova (agents)]!

|
! [Nova (agents)

! [Neutron (agents) | | ! [Neutron (agents)| |
! i

,,,

Experimental campaign overview

On Grid'5000 . .
m single job to run all the parameters (need
data provenance some calibration) (one cluster for
make reservation(conf) everything)
for parameter in parameters: m clean env is TBD
bench (parameter) m bench includes deployment / network

backup env
clean env
data analysis
until satisfied

intermediate_data()
until statisfied m create_store_ push intermediate data to

a git (JSON metrics or even binary files :()

emulation

m backup stores raw data in a storagebk
space (500GB) (system metrics /
application metrics)

visualize()
m visualize using Jupyter

Experimental campaign overview

More practically:
m Centralized GIT (link)

m Launchers + configurations (ex1, ex2)
m Intermediate data
m Jupyter notebooks
m report (paper)
m Experimental framework code is elsewhere: (link)
m The experimental loop is implemented here: (code)

https://gitlab.inria.fr/discovery/amqp-paper
https://gitlab.inria.fr/discovery/amqp-paper/blob/master/experiments/confs/test_case_1/constant_bus_load-x-x-x-test_case_1.yaml
https://gitlab.inria.fr/discovery/amqp-paper/blob/master/experiments/confs/rabbitmq-edge/cluster_latency_loss-x-x-x_test_case_1.yaml
https://github.com/msimonin/ombt-orchestrator
https://github.com/msimonin/ombt-orchestrator/blob/406c79b3e9f3587f74a247b3b3907171a50bc8cc/orchestrator/campaign.py#L286-L316

Scaling the experiment

To scale an experiment

You need good abstractions

m Infrastructure level (horizontal scaling of hardware resource)
m Optimize use of available physical resources (e.g start more agents without wasting
resources)
m Optimize deployment time (e.g can you afford a kadeploy3 run between each
parameter ?)

m Application level (cope with higher number of nodes)

m Optimize the configuration phase (e.g what internet bandwidth is required for your
deployment ?)

m Scale the instrumentation (monitoring stack, the experimentation controller)

m Tune system parameter (number of file descriptors, ARP tables..)

m User level (increase the number of experimenters)

m Make things explicit
m Improve user experience (cleaner interface / packaging of experimentation code)

How do we scale? densification

For a given bus deployment, we want to scale
the number of agents

m One agent is one python process (1 CPU
core)

m Agents have low CPU utilisation

— We can pack together agents (up to 200 per
machine in our case)

sys. metrics

m BUT the deployment logic need to be
deeply adapted

m e.g handle port collisions

m need to be scaled also

m can be hard to maintain

How do we scale? virtualisation

m Virtualisation let us optimise the use of nodes

m Avoid the modification of the machinery (deployment and execution scripts)

It is complementary to densification strategy
For a fixed number of machines:
densification + virtualisation = more resources to use

Limits are shifted to external concerns (no more than 400-500 computes in OS)

Deployment time is reduced (with alt-reference image from 1h to 15 min)

Calibrating 1/2

Some questions (and answers for our use case) :
m Do we need specific hardware ?

m development phase: we want to be able to test quickly on any machine
m production phase: we want to run all the xps on the same hardware (same cluster)

m What storage capacity ?
m We use a 500GB storage space provided by Storagebk
m We asked it to be shared between 3 users?
m How much time a campaign will take (we ran dozen of campaigns)

m We target one run in a night duration (14 hours)
m If that's not finished we should be able to restart easily the missing runs

Lthis is now a standard feature of G5K

Calibrating 2/2

Issues faced:

m Too many parameters (because we wanted too many points in our graphs)
m Too long duration for each parameter

m Underestimation of the effect of delay when emulating the network (think of 10°
messages + ack with 200ms latency)

m Not anticipated scaling issues

Automating the data provenance/analysis

m Intermediate data to graphs

Exploratory/Explanatory work
m Code looks like this: code
m Notebooks look like that: notebook

https://github.com/msimonin/ombt-orchestrator/blob/406c79b3e9f3587f74a247b3b3907171a50bc8cc/orchestrator/campaign.py#L286-L316
https://nbviewer.jupyter.org/url/enos.irisa.fr/ombt-orchestrator/test_case_1_rabbitmq/test_case_1.ipynb

Automating the full process

m Embrace existing tools:
https://www.grid5000.fr/w/Grid5000: Software

m Learning curve is most probably justified: reuse and reduce (code/errors)

m Think ahead (ACM 3Rs)
Repeatability — Replicability — Reproductible

https://www.grid5000.fr/w/Grid5000:Software

Backup slides

Want some graphs?

Choose in the list:

AMQP1.0 / Qpid-Dispatch-Router achieves

m Lower latency in message delivery for anycast and multicast for both RPC.cast
and RPC.calls

m Significantly less resource consumption
m Supports the geo-distribution of its agent in achieving better locality
m RabbitMQ (cluster) support for distributing its agent is (very) limited

Conclusion of Operational evaluation

m In front of WAN latency and loss, the routers (no message retention) is as
effective at delivering messages as the brokers (message retention)

m Routers is less resilient in the case of network dropouts
m Routers stil consumes less resources than the broker

m In both cases packet loss seem impact of the loss can be significant

Synthetic evaluation

Synthetic evaluation

Synthetic evaluation: centralized deployment

Synthetic evaluation: Resource Consumption

Metric Bus conf. Clients

1000 2000 4000 6000 8000 10000

1 broker 7735 14444 21470 28268
1 router 519 1286 1937 23888 3906
RAM 3 brokers 6935 15463 23426 30445 36725 40854
(MB) 3 routers 400 826 1547 2286 3713 4326
5 brokers 9583 18468 28095 32659 39779 45060

5 routers 616 1187 1712 2824 3885 4565 - Rabb|t / QDR

1 broker 24 22 21 21

1 router 1 1 2 2 2 .
CPU 3 brokers 27 40 37 47 51 53 s MEM: x9 - x17
cores 3 routers, 1 2 2 2 3 6

5 brokers 27 37 49 49 54 57 m CPU: x8 - x27

5 routers 2 2 2 4 3 4 [| TCP X2

1 broker 2632 4632 8628 12628
1 router 1033 2030 4025 6025 8025
TCP 3 brokers 2612 4639 8637 12638 16643 20638
conn. 3 routers 1046 2047 4040 6035 8038 10040
5 brokers 2655 4656 8656 12656 16658 20656
5 routers 1051 2070 4057 6048 8047 10048

TABLE II: Results of the anycast scenario. System metrics for rpc-call
call type. Maximum values obtained during the benchmark for memory usage,
number of processors and TCP connections.

Synthetic evaluation: latency with centralized deployment

10°

102

latency (ms)

w
L R T T P ER T L L s ss FERE Y

10%

102

“lad L I g T, o

O N O O O N O N N N N N O N N N N O N O N O O O N O N O N N O O N
x““ 1““ N @“‘ ST o0 oS e°° x““ '@“ r&"’ e°° A0 A T e n““ x““ 1““ u““ 6°° 5 o0 AT a0 a0 T (o
v\“{\ v\‘“\ 0\‘«\ v\‘“\ °&i 0\)@ B O\y« v\‘“\ “\\«\ ‘)\‘d\ “\‘«\ 0\‘ @Q O s e s B\pe J@(v\‘«\ O 0\‘«\ ‘)\‘d\ 0\«\“@& 00‘: 00‘: 0\)&: 0\: 0&@ e
o
o

latency (ms)

20" AN AR
NtV AR LA APl
driver - clients

(a) Anycast scenario (top rpc—-call, bottom rpc-cast).

ljtencv(m:)
HH
HTH
—{TH
—{ T
|
— H
—TH
—
=
I
(]
HH
HIH
-
[l
HoH
-
—{
—{Th
—TH
—{TH
— T
y
-
H
HIH
HIH
o
{
—t
—i
—TH
—H

Synthetic evaluation: decentralized deployment

Synthetic evaluation: latency with centralized deployment

10°

o

g

2

.

; I

=

11 i I I I I
R oL o1 oL oL o0 o0 E
10°

<

a

E

£

s

H

3 TT TT T T T I

< S o T S o T T T o I 1 T T o IO T

o 0‘2 0“;5 e“: b‘f 0“;9 e:g’ s‘f 5“:" a“g’ s‘f 5“:" S0y e 0 0 0 0 o8 o NN e‘“"‘ o0, e“%&“‘ 0\“5 e““’ V“ 0“‘ o
x“ 2 \n“ A x““ A8 AN AT 0400 150 0“ Xm“ 150 eo“ x““ 15“ “00 \00 .f,“ Q@ x““ 1”“ @“ @0 1"“ Qm“ & »;;“ @n @c 150

Pt
5 et e e 5 5@ et <
L T ‘,\)\‘ Sl o;\‘ n‘;“avv“ NS (e; ou‘) v\\“‘&@ oS (o\“ o@ \““ “““mﬁ oSl \X@‘“‘,\\“\ s
2 2@ P Py

et SN el «ef
“\““‘ﬁ(o\‘s(o" e vm RS s
ket ke

Fig. 4: Results of the anycast scenario in a decentralized deployment. Latency boxplots for bus implementations, number of clients, and link delay of
rpc-call (top 0% loss, bottom 1% loss).

Operational evaluation

Operationnal evaluation

Operational evaluation: network dropout

Aggresively drop network every 5min for different durations.
Boot and delete scenario.

1=300s, d=30s f=300s, d=605 f=300s, d=120s
200 o Normal 0 o Emor 10 o e
o Normal © Normal
250 250 20
g 20 2 20 g0 |
H H £ ¢ o o °
£ £ : 3
£ Swi o 4 2o £ & ¢ 8 ¢
i & o k) ? ° ° 8 I
100 100 9 100
° ° o o ° ° L} ° “ ° ° °
o 3 o 9 °
© © ° ° 9% %
{8)) 3 w8 o =8 o
o~ g g g g o (at ol ol ak LB a4
B o o
0 20 S0 B0 1000 150 1500 1750 O 20 0 70 1000 10 1500 1750 0 250 500 750 1000 1250 1300 1750 2000
time (s) time (5) time (5)
23005, d=30s #=300s, d=60s 23005, d=120s

$ ¥
"

© Normal

o b %

o

g g g o

/ .

LI S S
e % o & s e

8
% o gy ©EE S0 D o,
- L]))

. . .
9

° 8

*) o

o . ®

@ o Eror
Normal

500

750 1000 1250 1500 1750
time fs)

0 25 500 750 1000 1250 1500

time (s)

1750

Operational evaluation: latency, loss impact

Latency and packet loss is enforced between core and edge

NovaServers.boot_and_associate_floating_ip

400 computes
bus = rabbitmq

160

140

120 +
2
5 100
=1
€ g0
H]
3

L
t
R B S -}Hﬁ ="

. 0.2
bus = qdr . 0.4
160 N 0.8
140 . 1.0
= 20
120
2
o 100
€ 80 * ;
3
©
60 ++
20 % éﬁ %
Fheereh ¥Flebsn s=FEw F
20
0.0 5.0 20.0 40.0 80.0 120.0 200.0

latency

Operational evaluation: consumption

CPU consumption of QDR and RabbitMQ

I

Nl W PR SLIR PG
4 » "‘\Il

x10 CPU consumption for RabbitMQ (same conclustion with RAM - x5)

Operational testing: behind the scene

NeutronNetworks.create_and_delete_subnets

100 computes

bus = qdr
8
7
6
o
c
25
g
S4 s
3 .
3 loss
2 . 0.0
. 0.1
1 . 0.2
bus = rabbitmgq . 04
8 . 0.8
. 1.0
7 2.0
"6
c
25
g
sS4 e -
o
3
2
1
0.0 5.0 20.0 40.0 80.0 120.0 200.0
latency

Not impacted ? Are we measuring the right thing 7

Operational testing: behind the scene

m Behind the scene

m boot-server-and-attach-interface
create-and-delete-network
create-and-delete-port
create-and-delete-router
create-and-delete-security-groups
create-and-delete-subnet
set-and-clear-gateway

What is the impact of message loss on neutron multicasting system 7 We probably
need some ad’hoc methods now...

Operational evaluation: network dropout

Network dropout every 10min for
Boot and delete scenario.

=600s, d=30s

different durations.

f=600s, d=60s

f=600s, d=120s

0 o Normal 00 o emor 200 o emor
o Nomal o Normal
250 250 250
220 200 200
H ° ¢ %
3 8 @ 9
£ 0 150 o 150 % 'S
g 8 s, 8
i g 8 L]
100 . o 100 100
o
9 % 3 o 9 o
@ o
4 8 G 50 50 o
)
o & & & & f F o o Y
o e I
T 20 w0 0 0 1o 100 10 2000 S 20 e 7m0 1w w0 e wwe o 20 0 730 w0 50 100 7o
time (s) time (s) time (s)
f=600s, d=30s f=600s, d=60s f=600s, d=120s
0 o toma 00 3 F o Eror 00 3 o o
o Nommal o Nommal
250" 250" 2509 o o °
£ 200 g £ a0
£ 1m0 £ 150 o £ 10 . . .
g H % 4 .
8 & .) ‘ &8
100 R 100 100
% 3 ;
50 [o, 8 8 50
& & & é B FIEIEE B gt I P
0 0 0 . r_J
0 200 w0 7o 1w 0 10 10

time (s)

0 25 500 750 1000 1250 1500 1750 2000

time (s)

0 250 500 750 1000
time (5)

1250 1500 1750

Different message paths in a RabbitMQ cluster

low-latency path

medium-latency path

latency (ms)

Openstack Message Bus Evaluation: What? (1/)

What ?

m Evaluation of the internal message bus of OpenStack in a Fog/Edge context

Openstack Message Bus Evaluation: What? (2/)

m Orange use case: topology

22ms RTT
mm - NR
|
8ms RTT '
.
46ms RTT
[T RS — NC
i
12ms RTT '
!
NE/NRO | ---------------- NE/NRO

Openstack Message Bus Evaluation: What (3/)

m Orange use case: capacity

NR

NC

NE/NRO

16 sites

32 sites

10 racks each 160 computes each
~ 5120 computes

1024 sites
1 rack each 16 computes
~ 16 384 computes

Openstack Message Bus Evaluation: What (4/)

Scenario: One single distributed OpenStack

e m In NRs (computes in NCs): 1x OS
B oo m 5120 computes - 22 ms latency (NRs)
: m In NR/NC (computes in NE/NRO): 1x OS
e e m 16384 compute - 44 ms latency (NCs)
Challenges
m Scalability

m Locality

Openstack Message Bus Evaluation: What (5/)

Scenario: Sharded control planes
m In NRs (computes in NCs): 16x OS
m 320 computes each - 8ms RTT latency
m In NCs (computes in NE/NRO): 32x OS
m 512 computes each - 12 ms RTT latency
| o | SR gcome m In NRs (computes in NE/NRO): 16x OS
m 1024 computes each - 20 ms RTT latency

Challenges

m Top layer management

m Collaborative management: Goal of Discovery for OpenStack

Openstack Message Bus Evaluation: How

m Different access patterns
m Unicast: direct messaging
e.g: n-api -> n-cpt to shutdown vm
m Anycast: queue abstraction with multiple producers/consumers
e.g: n-cpt -> n-cond to report state (periodic tasks)
m Muticast: notification like message to a set of subscribers e.g: g-server -> all g-ml2
agents security group change
m Different garantees
m Call: "true” RPC (wait the return value of the remote invokation)
m Cast: Fire-and-forget

Openstack Message Bus Evaluation: How

m Two steps

m Synthetic evaluation: consider only low-level RPC agents
m Evaluate the access patterns / garantee
m In face of latency, message loss
m Decent scale

m Operational evaluation
m Evaluate OpenStack
m In face of latency, message loss and dropout
m Reasonnable scale

