
Reproducible research on microarchitectural attacks

Clémentine Maurice, EMSEC
February 12, 2020–Xug meeting, Rennes, France



Reproducible research, it’s a good idea, right?

2



Reproducible research on o�ensive security?

• Ethical issues if anybody can reproduce attacks without any e�ort

• Compromise: some researchers publish the “basic blocks”
• hope: it’s sort of working, script kiddies can’t use it, experts can modify it for

their own research
• reality: nobody can use it/it depends on how persistent your PhD student is

→ some crucial details are le� out and there are magic numbers everywhere

3



Reproducible research on o�ensive security?

• Ethical issues if anybody can reproduce attacks without any e�ort
• Compromise: some researchers publish the “basic blocks”

• hope: it’s sort of working, script kiddies can’t use it, experts can modify it for
their own research

• reality: nobody can use it/it depends on how persistent your PhD student is
→ some crucial details are le� out and there are magic numbers everywhere

3



Reproducible research on o�ensive security?

• Ethical issues if anybody can reproduce attacks without any e�ort
• Compromise: some researchers publish the “basic blocks”

• hope: it’s sort of working, script kiddies can’t use it, experts can modify it for
their own research

• reality: nobody can use it/it depends on how persistent your PhD student is
→ some crucial details are le� out and there are magic numbers everywhere

3



Reproducible research on o�ensive security targeting hardware?

• You can update so�ware, you can’t (easily) update hardware

• Intel knows a thing or two about it
• Our community standards:

• it’s getting better, but so far: if the paper says it runs on two di�erent CPUs
that are somewhat recent, we’re good!

• the general sentiment: running code on more than two machines is “just
engineering”, so we don’t care

4



Reproducible research on o�ensive security targeting hardware?

• You can update so�ware, you can’t (easily) update hardware
• Intel knows a thing or two about it

• Our community standards:
• it’s getting better, but so far: if the paper says it runs on two di�erent CPUs

that are somewhat recent, we’re good!
• the general sentiment: running code on more than two machines is “just

engineering”, so we don’t care

4



Reproducible research on o�ensive security targeting hardware?

• You can update so�ware, you can’t (easily) update hardware
• Intel knows a thing or two about it
• Our community standards:

• it’s getting better, but so far: if the paper says it runs on two di�erent CPUs
that are somewhat recent, we’re good!

• the general sentiment: running code on more than two machines is “just
engineering”, so we don’t care

4



Reproducible research on o�ensive security targeting hardware?

• You can update so�ware, you can’t (easily) update hardware

• Intel knows a thing or two about it
• The security community standards:

• it’s getting better, but so far: if the paper says it runs on two di�erent CPUs
that are somewhat recent, we’re good!

• the general sentiment: running code on more than two machines is “just
engineering”, so we don’t care

5



Reproducible research on o�ensive security targeting hardware?

• You can update so�ware, you can’t (easily) update hardware
• Intel knows a thing or two about it

• The security community standards:
• it’s getting better, but so far: if the paper says it runs on two di�erent CPUs

that are somewhat recent, we’re good!
• the general sentiment: running code on more than two machines is “just

engineering”, so we don’t care

5



Reproducible research on o�ensive security targeting hardware?

• You can update so�ware, you can’t (easily) update hardware
• Intel knows a thing or two about it
• The security community standards:

• it’s getting better, but so far: if the paper says it runs on two di�erent CPUs
that are somewhat recent, we’re good!

• the general sentiment: running code on more than two machines is “just
engineering”, so we don’t care

5



What do I call reproducible

• The same code on the same data works on another machine

• same generation
• more points to you if di�erent generation/di�erent vendor

Bottom line

1. It’s not that easy and it’s not “just engineering”
2. I need a pool of heterogeneous machines (mostly di�erent generations)

→ I hoard laptops forever so I can keep a Sandy Bridge CPU.

6



What do I call reproducible

• The same code on the same data works on another machine
• same generation
• more points to you if di�erent generation/di�erent vendor

Bottom line

1. It’s not that easy and it’s not “just engineering”
2. I need a pool of heterogeneous machines (mostly di�erent generations)

→ I hoard laptops forever so I can keep a Sandy Bridge CPU.

6



What do I call reproducible

• The same code on the same data works on another machine
• same generation
• more points to you if di�erent generation/di�erent vendor

Bottom line

1. It’s not that easy and it’s not “just engineering”
2. I need a pool of heterogeneous machines (mostly di�erent generations)

→ I hoard laptops forever so I can keep a Sandy Bridge CPU.

6



What do I call reproducible

• The same code on the same data works on another machine
• same generation
• more points to you if di�erent generation/di�erent vendor

Bottom line

1. It’s not that easy and it’s not “just engineering”
2. I need a pool of heterogeneous machines (mostly di�erent generations)

→ I hoard laptops forever so I can keep a Sandy Bridge CPU.

6



What do I do: Side channels on microarchitecture

• One axis: �nding novel microarchitectural side-channel techniques

• For example: the cache leaks information, but how you can exploit it
depends on some properties of the cache (inclusivity, level of cache
targeted. . . ), and of the environment (native code, JS, ARM vs x86. . . )

→ Basically: �nd a sequence of instructions that does what I want

7



What do I do: Side channels on microarchitecture

• One axis: �nding novel microarchitectural side-channel techniques
• For example: the cache leaks information, but how you can exploit it

depends on some properties of the cache (inclusivity, level of cache
targeted. . . ), and of the environment (native code, JS, ARM vs x86. . . )

→ Basically: �nd a sequence of instructions that does what I want

7



What do I do: Side channels on microarchitecture

• One axis: �nding novel microarchitectural side-channel techniques
• For example: the cache leaks information, but how you can exploit it

depends on some properties of the cache (inclusivity, level of cache
targeted. . . ), and of the environment (native code, JS, ARM vs x86. . . )

→ Basically: �nd a sequence of instructions that does what I want

7



Why is it so complicated?

8



Part I: The Good

a.k.a.
Problems I don’t have

9



I’m a minimalist

I don’t need:

• fancy clusters
• a lot of memory
• dozens of cores

→ I usually just use my own laptop to run experiments

10



I’m a minimalist

I don’t need:

• fancy clusters
• a lot of memory
• dozens of cores

→ I usually just use my own laptop to run experiments

10



I’m a minimalist

I don’t need:

• fancy clusters
• a lot of memory
• dozens of cores

→ I usually just use my own laptop to run experiments

10



People running their experiments on IGRIDA or Grid’5000 be like

11



So�ware portability

• The attacks do rely on speci�c implementations, so if the implementation
changes that might be over, but that’s fair

• I don’t (normally) use fancy features that may change from one OS version
to the other, or write code that relies on libraries that will break if the
version is not the same

→ So�ware portability is (mostly) �ne

→ Starts to be an issue when you want to automate things

12



So�ware portability

• The attacks do rely on speci�c implementations, so if the implementation
changes that might be over, but that’s fair

• I don’t (normally) use fancy features that may change from one OS version
to the other, or write code that relies on libraries that will break if the
version is not the same

→ So�ware portability is (mostly) �ne
→ Starts to be an issue when you want to automate things

12



Part II: The Bad

a.k.a.
Problems I have I can live with

13



My constraints: sharing is not caring

• No VM → messes with timing
• No sharing the hardware → would pollute the cache/other

microarchitectural component
→ That’s the real reason I typically don’t use fancy clusters

• Side note: I used Grid’5000 for “Reverse Engineering Intel Last-Level Cache
Complex Addressing Using Performance Counters” (RAID 2015)

14



My constraints: sharing is not caring

• No VM → messes with timing
• No sharing the hardware → would pollute the cache/other

microarchitectural component
→ That’s the real reason I typically don’t use fancy clusters

• Side note: I used Grid’5000 for “Reverse Engineering Intel Last-Level Cache
Complex Addressing Using Performance Counters” (RAID 2015)

14



Part III: The Ugly

a.k.a.
The things that have kept me up many a night

15



The hardware stack

16



The nightmare of reproducibility

• Any change in the microarchitecture

• If it is the same generation, there might be changes in the number of cores,
in the size of the caches, associativity. . .
• not the end of the world, but requires to have generic code

→ truly engineering: usually okay for your own code, less so if you have code
from somebody else with magic values. . .

• Roughly one new generation per year, and changes can be quite big
• that part is the biggest issue

17



The nightmare of reproducibility

• Any change in the microarchitecture
• If it is the same generation, there might be changes in the number of cores,

in the size of the caches, associativity. . .
• not the end of the world, but requires to have generic code

→ truly engineering: usually okay for your own code, less so if you have code
from somebody else with magic values. . .

• Roughly one new generation per year, and changes can be quite big
• that part is the biggest issue

17



The nightmare of reproducibility

• Any change in the microarchitecture
• If it is the same generation, there might be changes in the number of cores,

in the size of the caches, associativity. . .
• not the end of the world, but requires to have generic code

→ truly engineering: usually okay for your own code, less so if you have code
from somebody else with magic values. . .

• Roughly one new generation per year, and changes can be quite big
• that part is the biggest issue

17



Example #1: Last-level cache complex addressing

18



Example #2: Cache replacement policy

19



Reproducing results on another machine
might be a scienti�c contribution

(and a top tier paper)

20



How to run prototypes on several microarchitectures? A girl can dream

• Having a physical platform where one could switch the CPU easily?
→ I frankly have no idea on how to do that

• What about simulators?
• simulators like gem5 lack realistic models
• I need realistic models: worthless if the attack only works on

the simulator
• microarchitecture is complex and vastly undocumented →

reverse-engineering is actually another fun part of my work
→ virtually nobody cares in the community, but I do care (ANR

on this topic)

ARCHI-SEC

21



How to run prototypes on several microarchitectures? A girl can dream

• Having a physical platform where one could switch the CPU easily?
→ I frankly have no idea on how to do that

• What about simulators?

• simulators like gem5 lack realistic models
• I need realistic models: worthless if the attack only works on

the simulator
• microarchitecture is complex and vastly undocumented →

reverse-engineering is actually another fun part of my work
→ virtually nobody cares in the community, but I do care (ANR

on this topic)

ARCHI-SEC

21



How to run prototypes on several microarchitectures? A girl can dream

• Having a physical platform where one could switch the CPU easily?
→ I frankly have no idea on how to do that

• What about simulators?
• simulators like gem5 lack realistic models

• I need realistic models: worthless if the attack only works on
the simulator

• microarchitecture is complex and vastly undocumented →
reverse-engineering is actually another fun part of my work

→ virtually nobody cares in the community, but I do care (ANR
on this topic)

ARCHI-SEC

21



How to run prototypes on several microarchitectures? A girl can dream

• Having a physical platform where one could switch the CPU easily?
→ I frankly have no idea on how to do that

• What about simulators?
• simulators like gem5 lack realistic models
• I need realistic models: worthless if the attack only works on

the simulator

• microarchitecture is complex and vastly undocumented →
reverse-engineering is actually another fun part of my work

→ virtually nobody cares in the community, but I do care (ANR
on this topic)

ARCHI-SEC

21



How to run prototypes on several microarchitectures? A girl can dream

• Having a physical platform where one could switch the CPU easily?
→ I frankly have no idea on how to do that

• What about simulators?
• simulators like gem5 lack realistic models
• I need realistic models: worthless if the attack only works on

the simulator
• microarchitecture is complex and vastly undocumented →

reverse-engineering is actually another fun part of my work

→ virtually nobody cares in the community, but I do care (ANR
on this topic)

ARCHI-SEC

21



How to run prototypes on several microarchitectures? A girl can dream

• Having a physical platform where one could switch the CPU easily?
→ I frankly have no idea on how to do that

• What about simulators?
• simulators like gem5 lack realistic models
• I need realistic models: worthless if the attack only works on

the simulator
• microarchitecture is complex and vastly undocumented →

reverse-engineering is actually another fun part of my work
→ virtually nobody cares in the community, but I do care (ANR

on this topic)

ARCHI-SEC

21



A new hope?

22



Artifact Evaluation

• Common in some computer science communities, new in security
• ACSAC (since 2017?), USENIX Security (since 2020), WOOT (since 2019)
• Incentive for reproducible research?
• Artifacts are still not part of the evaluation of the paper

23


