Measuring the duration of a matrix product is harder than you think

Tom Cornebize, Arnaud Legrand Laboratoire d'Informatique de Grenoble 8 October 2020, XUG meeting, The Internet

Predictive simulation/emulation of an application. Case study: High Performance Linpack (HPL), famous MPI benchmark (Top500). https://hal.inria.fr/hal-02096571

Predictive simulation/emulation of an application. Case study: High Performance Linpack (HPL), famous MPI benchmark (Top500). https://hal.inria.fr/hal-02096571

Predictive simulation/emulation of an application. Case study: High Performance Linpack (HPL), famous MPI benchmark (Top500). https://hal.inria.fr/hal-02096571

Predictive simulation/emulation of an application. Case study: High Performance Linpack (HPL), famous MPI benchmark (Top500). https://hal.inria.fr/hal-02096571

Which one is wrong? Simulation model, platform calibration, or platform mis-configuration/unstability?

Predictive simulation/emulation of an application. Case study: High Performance Linpack (HPL), famous MPI benchmark (Top500). https://hal.inria.fr/hal-02096571

Which one is wrong? Simulation model, platform calibration, or platform mis-configuration/unstability?

DGEMM takes 95% of HPL \Rightarrow need a lot of care for good predictions.

When and why does my platform change?

Evolution of the node dahu-26

Evolution of the node dahu-14

Overview of the cluster dahu

2/10

Overview of the cluster dahu

Performance, but also frequency and temperature.

RANDOMIZATION OF THE SIZES

```
experiments = read_expfile()
A = init_matrix()
B = init_matrix()
C = init_matrix()
for (m, n, k) in experiments:
    start = time()
    mat_prod(A, B, C, m, n, k)
    duration = time() - start
    write(m, n, k, duration)
```

 $M, N \sim \mathcal{U}(1, 4096), K \in \{128, 256, 512\}$

How should we measure the three different values for *K*, separately? Or all at the same time, shuffled?

 $M, N \sim \mathcal{U}(1, 4096), K \in \{128, 256, 512\}$

How should we measure the three different values for *K*, separately? Or all at the same time, shuffled?

 $M, N \sim \mathcal{U}(1, 4096), K \in \{128, 256, 512\}$

How should we measure the three different values for *K*, separately? Or all at the same time, shuffled?

Most likely explanation: cache effets \Rightarrow different arithmetic intensity.

RANDOMIZATION OF THE DATA

	mode	val(i)
<pre>init_matrix(M, N):</pre>	0	0
S = M * N	0.987	0.987
<pre>matrix = malloc(S)</pre>	1	1
<pre>for i in [0S-1]:</pre>	sequential	i/(S – 1)
<pre>matrix[i] = val(i)</pre>	random	$\sim \mathcal{U}(0,1)$
return matrix		'

	mode	val(i)
<pre>init_matrix(M, N):</pre>	0	0
S = M * N	0.987	0.987
<pre>matrix = malloc(S)</pre>	1	1
<pre>for i in [0S-1]:</pre>	sequential	i/(S – 1)
<pre>matrix[i] = val(i)</pre>	random	$\sim \mathcal{U}(0,1)$
return matrix		

Does it matter?

Evolution of DGEMM durations on the CPU 0 of dahu-1 (matrices of size 2048×2048)

Possible crazy explanation: bit flips consume more energy.

TESTING THE HYPOTHESIS: APPLYING A MASK TO THE RANDOM VALUES

TESTING THE HYPOTHESIS: APPLYING A MASK TO THE RANDOM VALUES

Testing the hypothesis: applying a mask to the random values

https://hal.inria.fr/hal-02401760

TOOLS AND METHOD

• Experimental objects: several C programs for making measures (DGEMM performance, network performance...), Simgrid for making simulations.

• Experimental objects: several C programs for making measures (DGEMM performance, network performance...), Simgrid for making simulations.

• Experiment engine: Peanut¹, launch a complete experiment on Grid'5000 (node reservation, deployment, setup, metadata collection...). Produce a .zip archive.

https://github.com/Ezibenroc/peanut

• Experimental objects: several C programs for making measures (DGEMM performance, network performance...), Simgrid for making simulations.

- Experiment engine: Peanut¹, launch a complete experiment on Grid'5000 (node reservation, deployment, setup, metadata collection...). Produce a .zip archive.
- Automatic processing of Peanut archives: Cashew², mainly used for the non-regression tests.

¹https://github.com/Ezibenroc/peanut ²https://github.com/Ezibenroc/cashew

• Experimental objects: several C programs for making measures (DGEMM performance, network performance...), Simgrid for making simulations.

- Experiment engine: Peanut¹, launch a complete experiment on Grid'5000 (node reservation, deployment, setup, metadata collection...). Produce a .zip archive.
- Automatic processing of Peanut archives: Cashew², mainly used for the non-regression tests.
- Monitoring: Ratatouille³, collect important metrics every N seconds (frequency, temperature, power usage...).

¹https://github.com/Ezibenroc/peanut ²https://github.com/Ezibenroc/cashew ³https://github.com/Ezibenroc/ratatouille Data analysis: mostly Python in Jupyter notebooks, but also R.

Data analysis: mostly Python in Jupyter notebooks, but also R.

Laboratory notebook: Org Mode.

✓ tom.cornebize@univ-grenoble-alpes.fr