

HPC-BigData Inria Project LAB

Enabling Reproducible Analysis of Complex Application Workflows on the Edge-to-Cloud Continuum

PhD candidate

Daniel Rosendo

Advisors

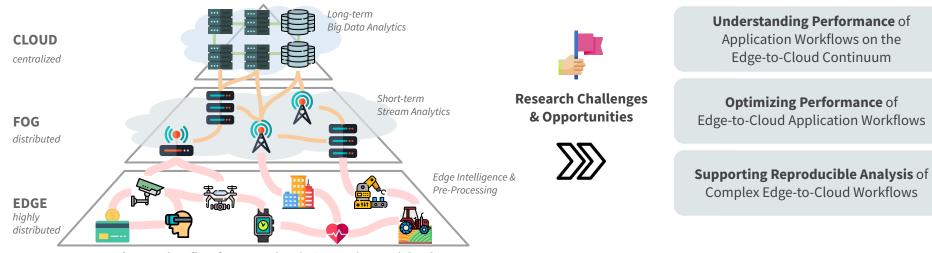
Gabriel Antoniu

Alexandru Costan

Patrick Valduriez

The Computing Continuum

Complex Application Workflows



Continuous dataflow from IoT Edge devices to the HPC/Cloud

Research Challenge 1: Understanding Performance

Research Challenges & Opportunities

Which system parameters and infrastructure configurations impact performance and how?

How to systematically perform large-scale experiments to enable the reproducibility of the results?

Representative setup to understand performance

Evaluation & Validation

Repeatable, Replicable & Reproducible experiments

IS THERE A REPRODUCIBILITY CRISIS?

"+70% failed to reproduce **another** scientist's experiments"

"+50% failed to reproduce their own experiments" **Technical Challenges**

 \sum

Simple testbed setups

Install & configure services

Configure network

Map application parts with underlying infrastructure

Define the execution workflow

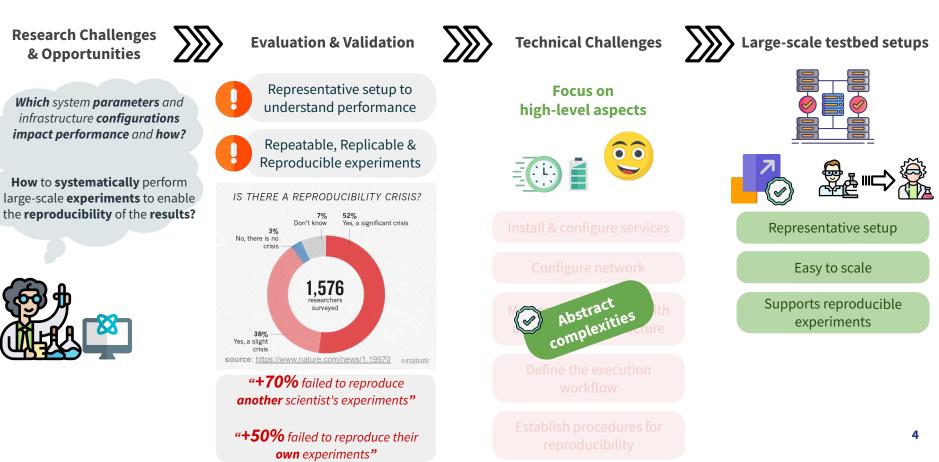
Establish procedures for reproducibility

Many abstractions

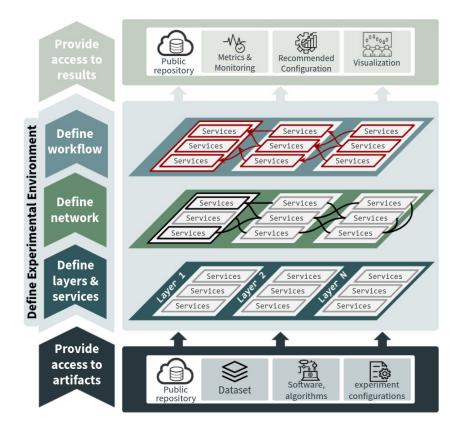
Scalability issues

Hard to reproduce

What Would Be an Ideal Solution?



What is **E2C**lab?



Reproducible Experiments

Repeatability, Replicability & Reproducibility

. Mapping

Application parts & physical testbed

Variation & Scaling

Experiment variation and transparent scaling

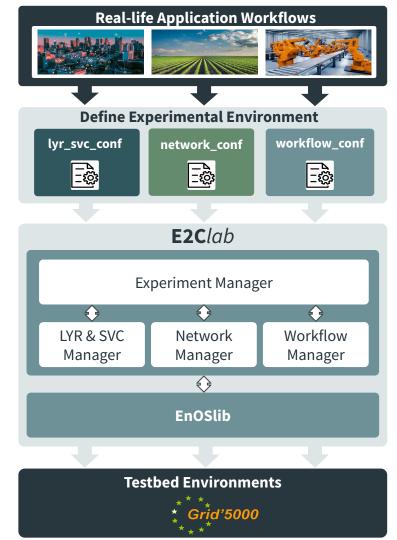
Network Emulation

Edge-to-Cloud communication constraints

Experiment Management

Deployment, Execution & Monitoring

What is **E2C***lab*?



Defining the experimental environment: *Layers and Services*

ŝ

layers

Cloud

Fog

Edge

zone A

zone B

1 environment:

quantity: 4

32

layers_services.yaml repeat: 2 services **Task Managers** န္တိ containers. quantity: 5 **5 physical** {{ ip, port, etc, }} VMs. or machines bare metal ((1)) Con and User-defined cluster: C Job zone A zone B Service servers: [A1,B2] Manager monitoring experiment network Telegraf InfluxDB **Cluster** A Chameleon Cluster B Cluster C Monitoring monitoring Grafana Server network environment

Selecting, reserving, monitoring, and configuring resources

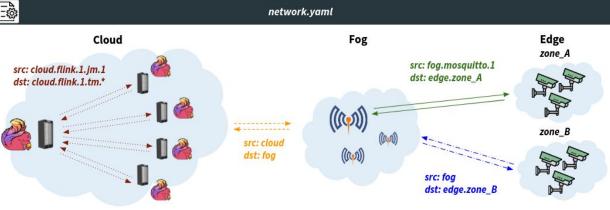
Defining the experimental environment: User-defined Service

"Our methodology can be generalized to other applications!"

	1 from e2clab.services import Service	
Reusable	2 3 class Flink(Service):	
services	4 5 def deploy(self): 6 # service logic 7 self.deploy_docker(registry_opts=registry_opts)	Big Data Al User's
🦊 GitLab	<pre>8 9 JM_PORT = "8081" 10 job_manager_service = "job_manager" 11 task_manager_service = "task_manager"</pre>	Big Data AI User's frameworks frameworks applications
🖶 ClientKerA.py	<pre>12 13 roles_job_manager = Roles({job_manager_service: [self.hosts[0]]}) 14 roles_task_manager = Roles({task_manager_service: self.hosts[1:len(self.hosts)]}) 15</pre>	
🕐 Default.py	<pre>15 16 JOB_MANAGER_ADDRESS = roles_job_manager[job_manager_service][0].address 17 self.env.update({"JOB_MANAGER_RPC_ADDRESS": JOB_MANAGER_ADDRESS}) 18</pre>	💏 🧰 🗰 🕺 🖓 👘 👘
🗢 Flink.py	<pre>19 with actions(roles=roles_job_manager) as p: 20 p.docker_container(name=job_manager_service,</pre>	
📌 Horovod.py	21image="flink:1.9-scala_2.11",22restart="yes",23restart_policy="always",	
📌 Kafka.py	24 network_mode="host", 25 env=self.env, 26 command="jobmanager")	
📥 KerA.py	<pre>27 28 with actions(roles=roles_task_manager) as p: 29 p.docker_container(name=task_manager_service,</pre>	kafka
📥 KerAF.py	30image="flink:1.9-scala_2.11",31restart="yes",32restart_policy="always",	
📥 KerFlink.py	<pre>33 network_mode="host", 34 env=self.env, 35 command="taskmanager")</pre>	among others!!!
📥 Mosquitto.py	36 37 # register service	· · · · · · · · · · · · · · · · · · ·
📌 PlantNetEngine.py	38 self.register_service(_roles=roles_job_manager, service_port=JM_PORT, sub_service=job_manager_service) 39 self.register_service(_roles=roles_task_manager, sub_service=task_manager_service) 40	8
	41 return self.service extra info, self.service roles	

Defining the experimental environment: *Network*

Defining network constraints



Defining the experimental environment: Workflow

Defining the execution flow and relationships

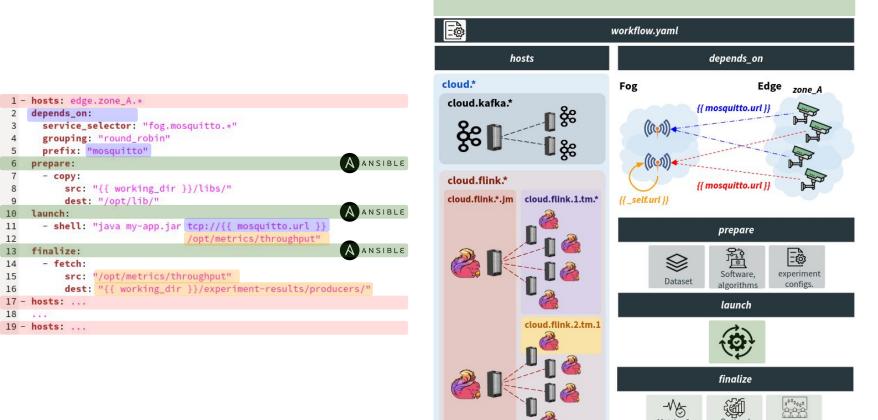
Optimal

Configuration

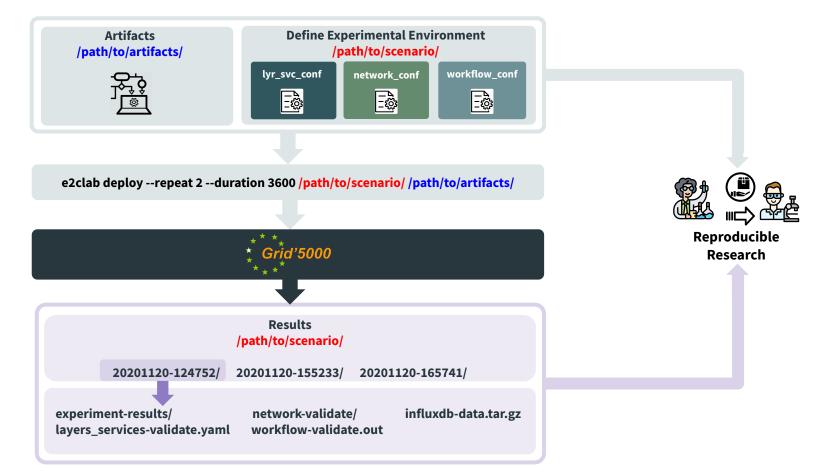
Visualization

Metrics &

Monitoring



Experimental cycle in **E2C***lab*



Research Challenge 2: Optimizing Performance

How to configure the system components to minimize the processing latency?

Metrics

energy, cost, resource usage & latency **Objective**

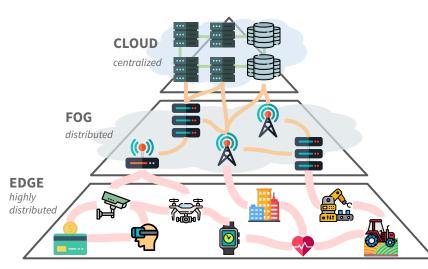
minimize processing time

Constraints

energy consumption limits & equipment cost < budget

Variables

config. params. of Edge, Fog, and Cloud systems



Where should application parts be executed to minimize communication costs and end-to-end latency?

Metrics

costs, latency, & resource usage **Objectives** minimize communication costs & minimize end-to-end latency **Constraints** budget & hardware resource limits **Variables** Edge-to-Cloud network communication

Edge-to-Cloud network communication links (bandwidth and delay) & number of Fog nodes per Edge device

Problem Statement

The performance optimization of application workflows on highly heterogeneous resources is challenging!

Heterogeneous constraints

computing resources; network communication; application requirements;

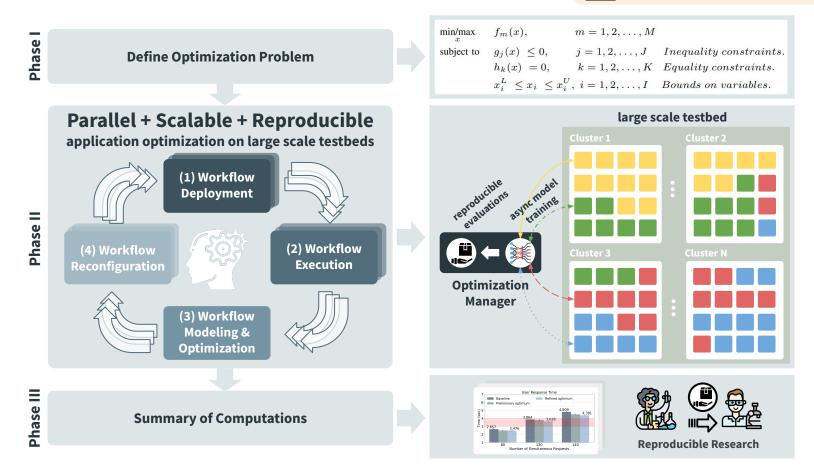
Search space complexity

myriad of combination of possibilities; multi-objective problems; NP-hard complex;

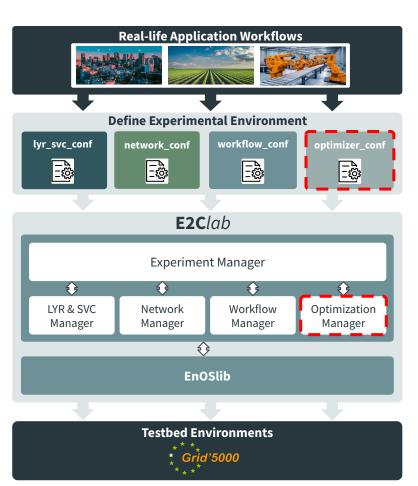
Selecting the most accurate optimization technique

multiple methods that perform differently; hyperparameter search;

Our Optimization Methodology



Implementation in **E2C**lab



How to setup an optimization?

User-defined optimization

from e2clab.optimizer import Optimization

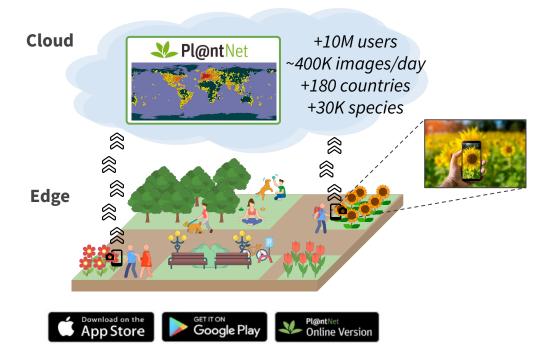
class UserDefinedOptimization(Optimization):

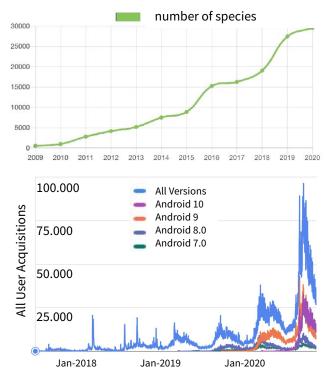
```
def run(self):
    algo = SkOptSearch(
        optimizer=Optimizer(
            base estimator='ET',
            n_initial_points=45,
            initial point generator="lhs",
            acq func="qp hedge"))
    algo = ConcurrencyLimiter(algo,
max concurrent=2)
    scheduler = AsyncHyperBandScheduler()
    objective = tune.run(
        self.run objective,
        metric="user resp time",
        mode="min",
        name="plantnet_engine",
        search alg=algo,
        scheduler=scheduler.
        num samples=10,
        config={
            "http": tune.randint(20, 60),
            "download": tune.randint(20, 60),
            "simsearch": tune.randint(20, 60),
            "extrac": tune.randint(3, 9)})
def run_objective(self, _config):
    # create an optimization directory
    self.prepare()
    # deploy the configs on the testbed
    self.launch()
    # backup the optimization computations
    self.finalize()
    # report the metric value to Ray Tune
    tune.report(user_resp_time=user_resp_time)
```


Supports state-of -the-art Bayesian Optimization libraries

among others!!!

Validation with a Large-scale Real-life Application: Pl@ntNet





Pl@ntNet has an exponential grow of new users acquisition every spring (peaks in May-June)

Understanding and Optimizing the Performance of Pl@ntNet

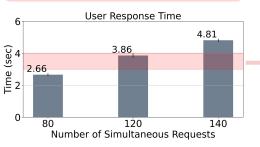
Validation with a Large-scale Real-life Application: Pl@ntNet

baseline Thread pool Description Hardware (# threads) # simultaneous requests HTTP CPU 40 being processed. # simultaneous images being CPU Download 40 downloaded. # simultaneous inferences in GPU Extract 7 a single GPU. # simultaneous similarity CPU Simsearch 40 search.

Pl@ntNet Identification Engine

Main performance metric: user response time

"Over **3-4 seconds** more than **60%** of users **abandon** the transaction and may even **delete** the application"

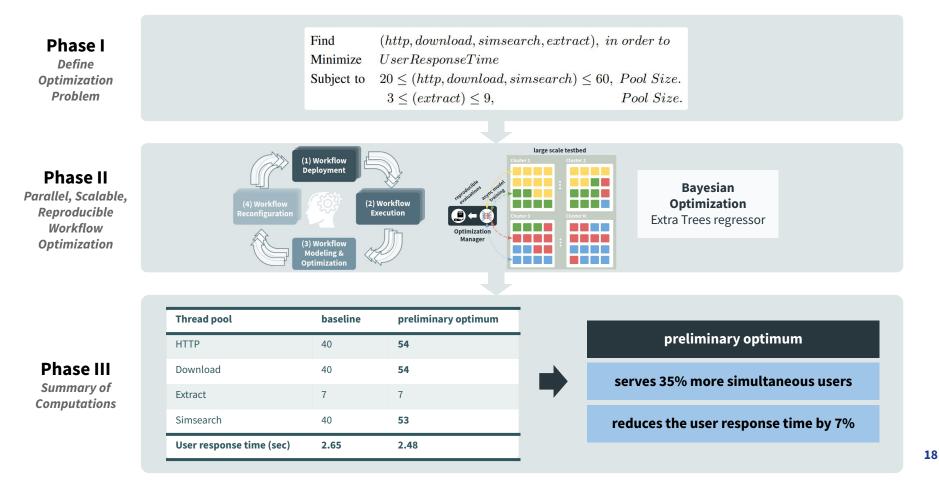


Research Questions

What is the **software configuration** that **minimizes the user response time**? How do the **Extraction** and **Similarity Search** thread pool configurations impact the **user response time**? How does the **number of** simultaneous users accessing the application impact on the user response time?

Large scale

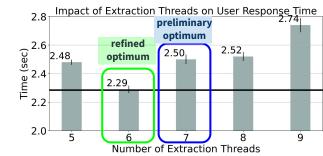
What is the **software configuration** that **minimizes the user response time**?

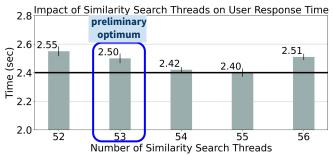


How do the **Extraction** and **Similarity Search** thread pool configurations impact the **user response time**?

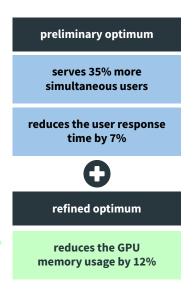
Sensitivity Analysis: One-at-a-time (OAT) method

Extraction





Similarity Search

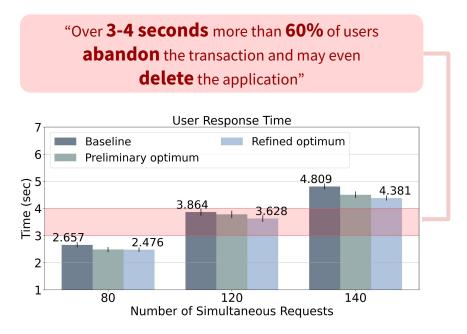


Thread pool	baseline	preliminary optimum	refined optimum
HTTP	40	54	54
Download	40	54	54
Extract	7	7 [5, 6, 8, 9]	6
Simsearch	40	53 [50, 51, 52, 54, 55, 56]	53
User response time (sec)	2.65 (±0.0914)	2.48 (±0.0912)	2.47 (±0.0826)

How does the **number of simultaneous users** accessing the application **impact on the user response time**?

Thread pool	baseline	preliminary optimum	refined optimum
HTTP	40	54	54
Download	40	54	54
Extract	7	7	6
Simsearch	40	53	53

refined optimum
serves 35% more simultaneous users
reduces the user response time by 7%
reduces the GPU memory usage by 12%



Main takeaways

Our methodology has proved useful for understanding and improving the performance of a real life application used at very large-scale.

The **Pl@ntNet** configuration found **using our methodology** serves **35% more simultaneous users** and **reduces the user response time by 7%** compared to the baseline.

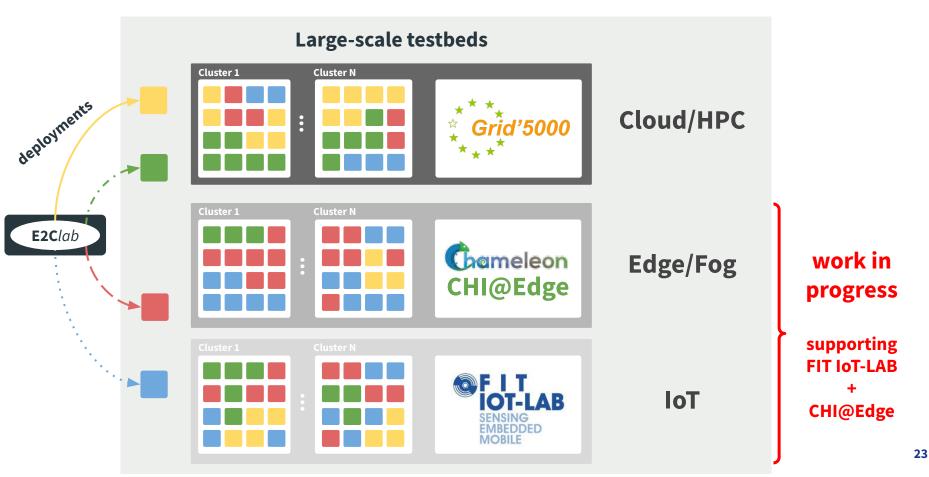
Feedback to G5K staff: availability of GPU nodes was the main limitation

Site	Cluster	# Nodes	GPU	# GPUs	RAM	NIC
Lille	chifflet	8	Nvidia GTX 1080 Ti	2	11GB	eth0/eno1, eth1/eno2
Lille	chifflot	6 2	[1-6] Nvidia Tesla P100 [7-8] Nvidia Tesla V100-PCIE	2 2	16GB 32GB	eth0/ens5f0, eth1/ens5f1
Lyon	gemini	2	Nvidia Tesla V100-SXM2	8	32GB	eth0/enp1s0f0
Lyon	orion	4	Nvidia Tesla M2075	1	5GB	eth0/enp68s0f0
Lyon	neowise	10	AMD Radeon Instinct MI50	8	32GB	eth0/eno1, eth1/eno2
Grenoble	drac	12	Nvidia Tesla P100 (CPU=Power POWER8NVL 1.0)	4	16GB	eth0/enP1p1s0f0
Nancy	grouille	2	Nvidia A100-PCIE	2	40GB	eth2/eno33
Nancy	gruss	4	Nvidia A40	2	45GB	eth2/eno33
Nancy	graffiti	12 1	[1-12] Nvidia RTX 2080 Ti [13] Nvidia Quadro RTX 6000	4 4	11 GB 22 GB	eth2/ens4f0
Nancy	graphique	5	Nvidia GTX 980	2	4GB	eth0/eno1
Nancy	grele	14	Nvidia GTX 1080 Ti	2	11GB	eth0/eno1
Nancy	grimani	6	Nvidia Tesla K40M	2	12GB	eth0/eno1
Nancy	grue	5	Nvidia Tesla T4	4	15GB	eth0/eno1

Pl@ntNet requires ~27GB of GPU RAM

Source (October 1st 2020 / December 2nd, 2021): https://www.grid5000.fr/w/Hardware

Ongoing work: from IoT/Edge to Cloud/HPC environments



Ongoing work: **Provenance capture in E2C**lab

Provenance capture for Edge-to-Cloud experiments as a **support to the analysis and debugging** of experiment results

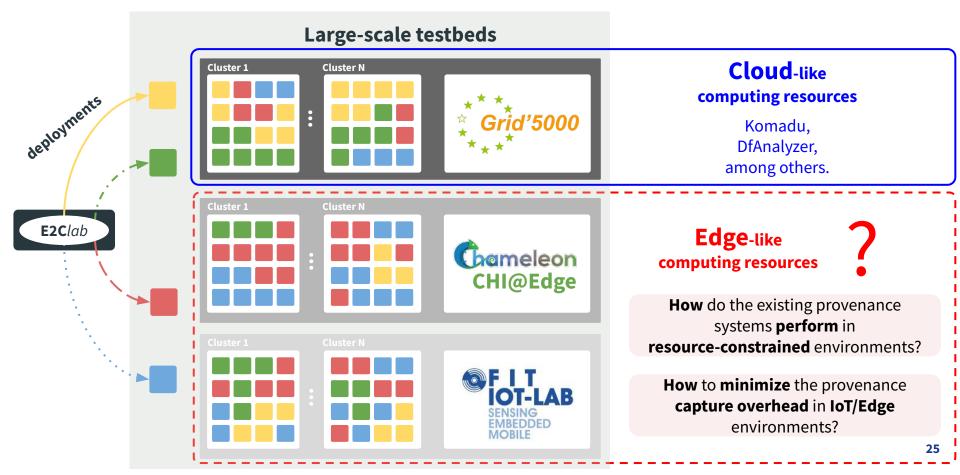
Goal: understand how experiment results have been produced

- What parameters produced these results?
- What steps did I invoke during workflow execution?

In collaboration with:

• Marta Mattoso (Federal University of Rio de Janeiro, Brazil)

Ongoing work: Provenance capture



Final Considerations

Reproducible Research

- Access to the experiment artifacts, results, and definition of the experimental environment
 - <u>https://gitlab.inria.fr/E2Clab/Paper-Artifacts/plantnet</u>

- E2Clab is open source! <u>https://gitlab.inria.fr/E2Clab/e2clab</u>
- Documentation: <u>https://e2clab.gitlabpages.inria.fr/e2clab/</u>
- Inria
 - Matthieu Simonin, Alexandru Costan, Gabriel Antoniu, Patrick Valduriez
- Hasso-Plattner-Institut
 - Pedro Silva
- Pl@ntNet team
 - Jean-Christophe Lombardo, Alexis Joly
- Argonne National Laboratory
 - Romain Egele, Jaehoon Koo, Prasanna Balaprakash, Orcun Yildiz
- PhD funded by: HPC-BigData Inria Project LAB

Acknowledgments

HPC-BigData Inria Project LAB

UFRJ

Thank you!