Experimentation users-group [Xug] Meetings

Beyond computational reproducibility: what does it mean for neuroimaging results to be irreproducible?

8 mars 2022

Camille Maumet Univ Rennes, Inria, CNRS, Inserm

A crisis in experimental research

The reproducibility crisis has led to reduced confidence in research findings

Low reproduction rates in many fields:

Cancer research: <11% Psychology: 36%

Medicine: 44%

(Begley & Ellis 2012 - Open Science Collab 2016 - Ioannidis 2005)

A crisis in experimental research

The reproducibility crisis has led to reduced confidence in research findings

Low reproduction rates in many fields:

Cancer research: <11% Psychology: 36%

Medicine: 44%

(Begley & Ellis 2012 - Open Science Collab 2016 - Ioannidis 2005)

Wasted money & effort for research

Delayed translation into clinical practice

Reduced trust in science

Reproducible evaluations?

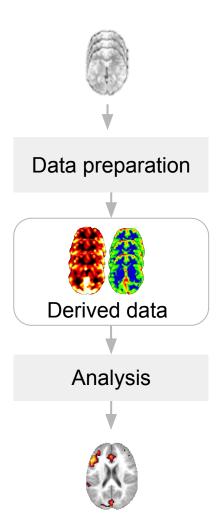
ACM definition²:

- Repeatability: Can someone in my team use my artifact using the exact same experimental setup and get similar results?
 e.g., I (or my teammates) can repeat my own experiment on the same Grid'5000 machines.
- Replicability: Can someone else from another team on another location use my articact and get similar results?
 e.g., Can my friend using another testbed than Grid'5000 redo my experiment and
- Reproducibility:

Can someone else build her own artifact (from the information of the paper), use her own platform and get similar results?

²https://www.acm.org/publications/policies/artifact-review-badging

A brain imaging study



Reproducible evaluations?

ACM definition²:

- Repeatability: Can someone in my team use my artifact using the exact same experimental setup and get similar results?
 e.g., I (or my teammates) can repeat my own experiment on the same Grid'5000 machines.
- Replicability: Can someone else from another team on another location use my articact and get similar results?
 e.g., Can my friend using another testbed than Grid'5000 redo my experiment and
- Reproducibility:

Can someone else build her own artifact (from the information of the paper), use her own platform and get similar results?

Participants

Table 1

A partial taxonomy of reproducibility in neuroimaging.

Levels of generalization	Participants		MRI acquisition			Experiment		Analysis		Personnel	
	Population	Sample	Scanner	Visit	Data	Stimulus population	Stimulus sample	Method	Code	Experimenter analyst	Data
Generalization over measurements											
ISO repeatability (e.g., 30-min intrascanner reliability)	•	•	•	•	D	•	•	•			•
ISO intermediate reproducibility (e.g., 7-d intrascanner reliability)	•	2. ● 9.	•	D	D	•	• 7		(. •)		
ISO reproducibility (e.g., 7-d interscanner reliability)		•	D	D	D		•	•		1	
Generalization over analyses											
Analysis replicability		¥(• %	•	•	•	1.	3 •0.		% ●0		•
Collegial analysis replicability	•		٠	•	•		***	•	E+1	•	D
Peng5 reproducibility	•	•	•	•	•	•	•		D	D	D
Generalization over materials and methods											
Near replicability (different subjects)	•	D	•	-	-	•	D•01	8.	% ●0		•
Intermediate replicability (different labs)	•	D	D		1000	٠	•		•	D	D
Far replicability (different experimental & analytical methods)	٠	D	D	55/4	455	٠	D	D	D	D	D
Hypothesis generalizability (different subject populations & types of stimuli)	D	D	D	-	S-22	D	D	D	D	D	D

Irreproducible with...

Same Data

Irreproducible with...

Same Data

Solutions: Sharing code, containerization, etc.

Repeatability: Can someone in my team use my artifact using the exact same experimental setup and get similar results?

Irreproducible with...

Same Data

Solutions: Sharing code, containerization, etc.

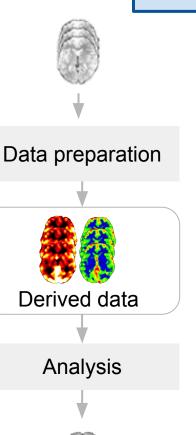
Open question: impact of different software environments?

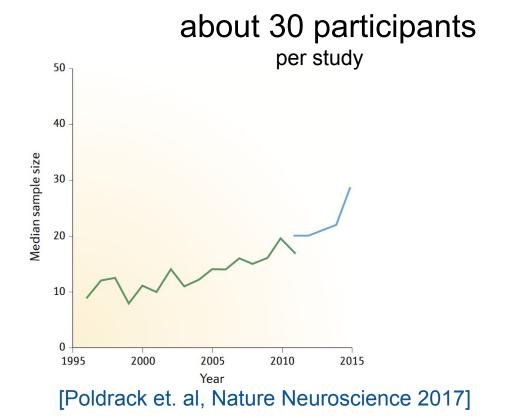
Replicability: Can someone else from another team on another location use my articact and get similar results?



Irreproducible with...

Different Data





Expl. 1: False positive finding

Low statistical power

SCIENCE

A Waste of 1,000 Research Papers

Decades of early research on the genetics of depression were built on nonexistent foundations. How did that happen?

ED YONG MAY 17, 2019

SEAN NEL / SHUTTERSTOCK

In 1996, a group of European researchers found that a certain gene, called *SLC6A4*, might influence a person's risk of depression.

It was a blockbuster discovery at the time. The team found that <u>a less active</u> <u>version</u> of the gene was more common among 454 people who had mood disorders than in 570 who did not. In theory, anyone who had this particular gene variant could be at higher risk for depression, and that finding, they said, might help in diagnosing such disorders, assessing suicidal behavior, or even

SCIENCE

A Waste of 1,000 Research Papers

Decades of early research on the genetics of depression were built on nonexistent foundations. How did that happen?

ED YONG MAY 17, 2019

SEAN NEL / SHUTTERSTOCK

In 1996, a group of European researchers found that a certain gene, called *SLC6A4*, might influence a person's risk of depression.

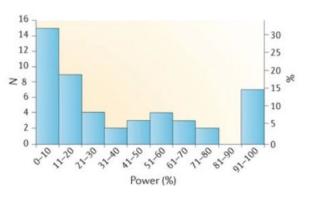
It was a blockbuster discovery at the time. The team found that <u>a less active</u> <u>version</u> of the gene was more common among 454 people who had mood disorders than in 570 who did not. In theory, anyone who had this particular gene variant could be at higher risk for depression, and that finding, they said, might help in diagnosing such disorders, assessing suicidal behavior, or even

Expl. 1: False positive finding

Low statistical power

Power of neuroscience studies

Power = Prob. to correctly find a significant effect when a the alternative hypothesis is true.



[Button et. al, Nat Rev Neurosci 2013]

SCIENCE

A Waste of 1,000 Research Papers

Decades of early research on the genetics of depression were built on nonexistent foundations. How did that happen?

ED YONG MAY 17, 2019

SEAN NEL / SHUTTERSTOCK

In 1996, a group of European researchers found that a certain gene, called *SLC6A4*, might influence a person's risk of depression.

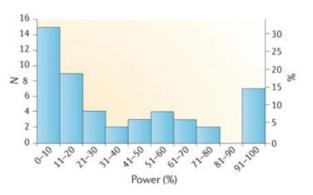
It was a blockbuster discovery at the time. The team found that <u>a less active</u> <u>version</u> of the gene was more common among 454 people who had mood disorders than in 570 who did not. In theory, anyone who had this particular gene variant could be at higher risk for depression, and that finding, they said, might help in diagnosing such disorders, assessing suicidal behavior, or even

Expl. 1: False positive finding

Low statistical power

Power of neuroscience studies

Power = Prob. to correctly find a significant effect when a the alternative hypothesis is true.



[Button et. al, Nat Rev Neurosci 2013]

Solutions: We need bigger datasets

Expl. 2: Lack of generalizability

The New York Times

Many Facial-Recognition Systems Are Biased, Says U.S. Study

Algorithms falsely identified African-American and Asian faces 10 to 100 times more than Caucasian faces, researchers for the National Institute of Standards and Technology found.

Morning at Grand Central Terminal. Technology for facial recognition is frequently biased, a new study confirmed. Timothy A. Clary/Agence France-Presse — Getty Images

Lack of representativity and diversity

Expl. 2: Lack of generalizability

The New York Times

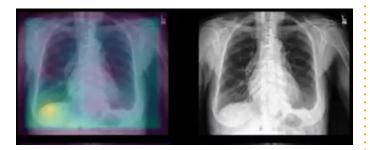
Many Facial-Recognition Systems Are Biased, Says U.S. Study

Algorithms falsely identified African-American and Asian faces 10 to 100 times more than Caucasian faces, researchers for the National Institute of Standards and Technology found.

Morning at Grand Central Terminal. Technology for facial recognition is frequently biased, a new study confirmed. Timothy A. Clary/Agence France-Presse — Getty Images

Lack of representativity and diversity

X-ray: Lung opacity detection Model trained on male images, tested on female images



[Larrazabal et. al, PNAS 2020]

Expl. 2: Lack of generalizability

The New York Times

Many Facial-Recognition Systems Are Biased, Says U.S. Study

Algorithms falsely identified African-American and Asian faces 10 to 100 times more than Caucasian faces, researchers for the National Institute of Standards and Technology found.

Morning at Grand Central Terminal. Technology for facial recognition is frequently biased, a new study confirmed. Timothy A. Clary/Agence France-Presse — Getty Images

Lack of representativity and diversity

X-ray: Lung opacity detection Model trained on male images, tested on female images

[Larrazabal et. al, PNAS 2020]

Solutions: We need representative and diverse datasets

Open data

Unique study 30 participants

OpenNEURO

studyforrest.org

- + Images
- + Homogenous
- Datasets

Open data

Unique study 30 participants

Consortium 1000 participants

- + Images
- + Homogenous
- Datasets

Open data

Unique study 30 participants

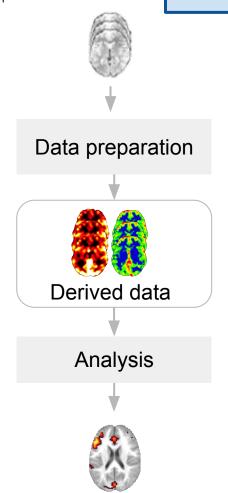
Consortium 1000 participants

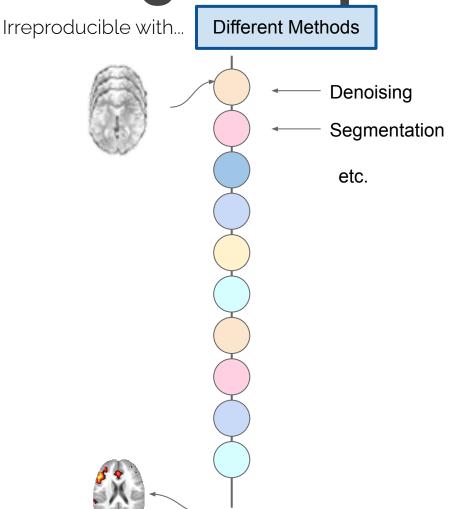
1000 Functional

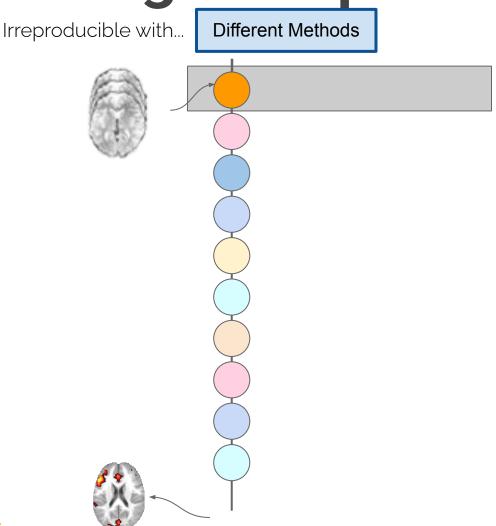
- + Images
- + Homogenous
- Datasets

Cohort
100 000 participants

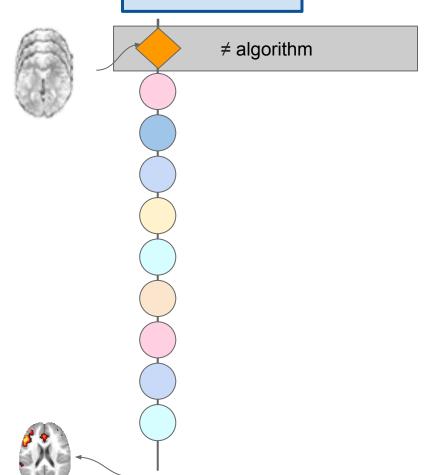
Irreproducible with...

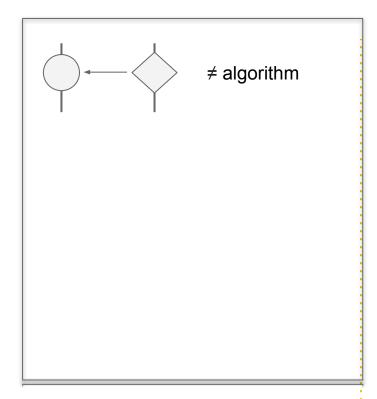




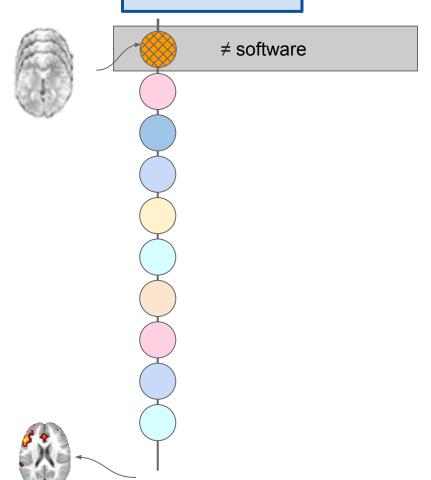


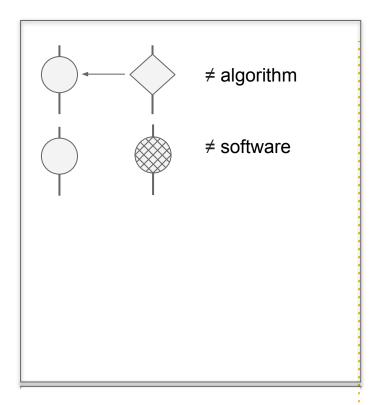
Irreproducible with...



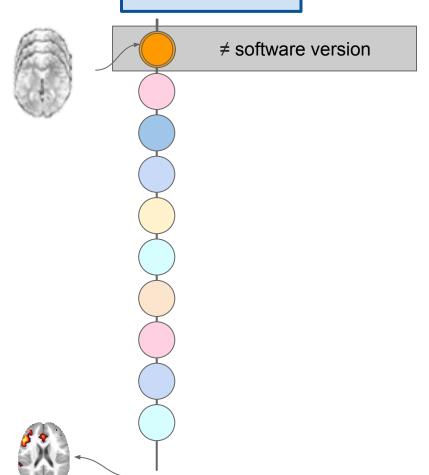


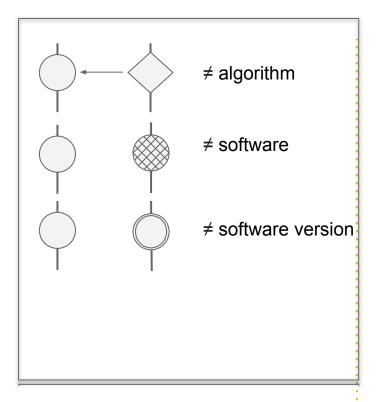
Irreproducible with...



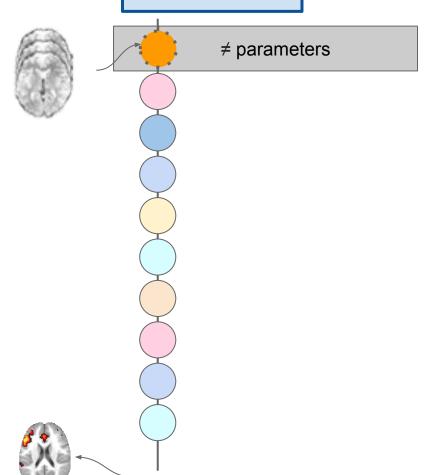


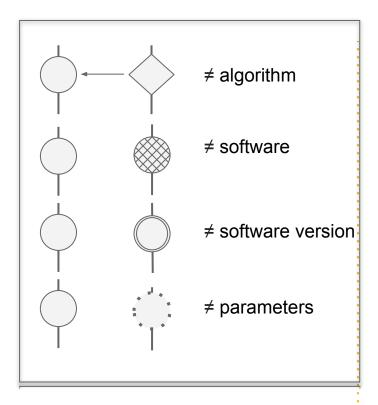
Irreproducible with...





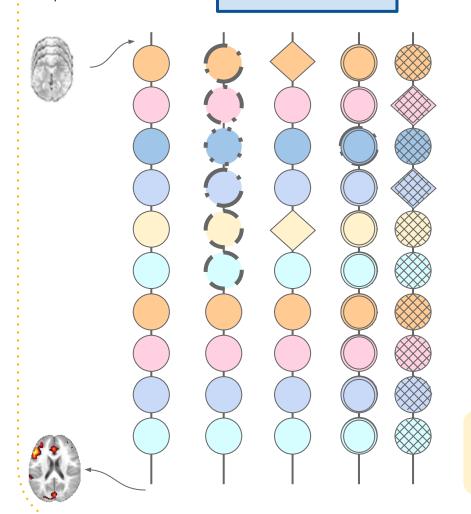
Irreproducible with...

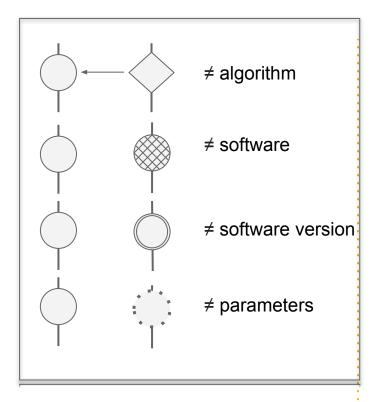




Irreproducible with...

Different Methods





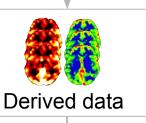
A family of acceptable pipelines

100 000+ combinations

Many analysts project: NARPS

1 dataset

Data preparation

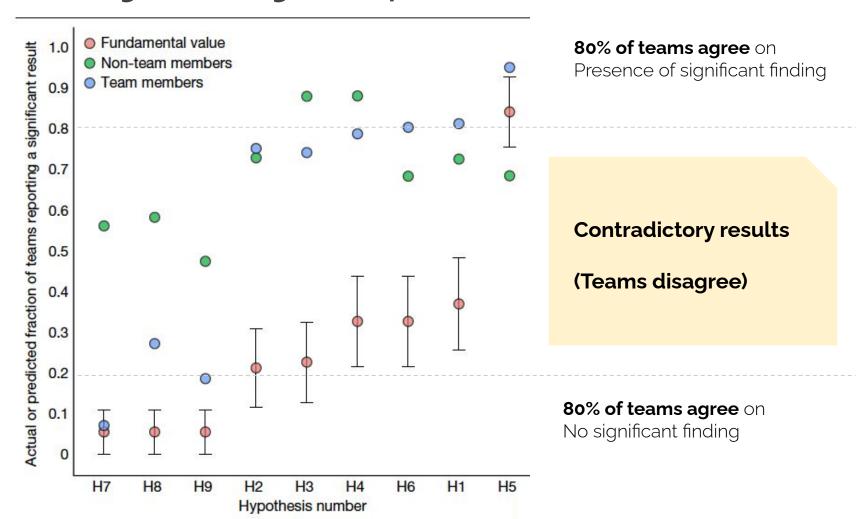


Analysis

9 yes/no research questions

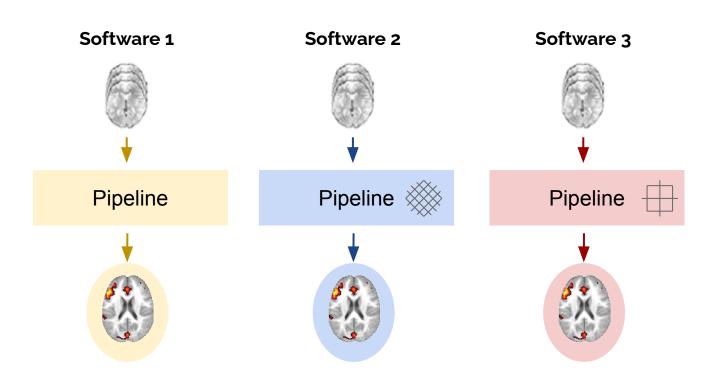
Q1 : Parametric effect of gain: Positive effect in ventromedial PFC - for the equal indifference group

Many analysts project: NARPS

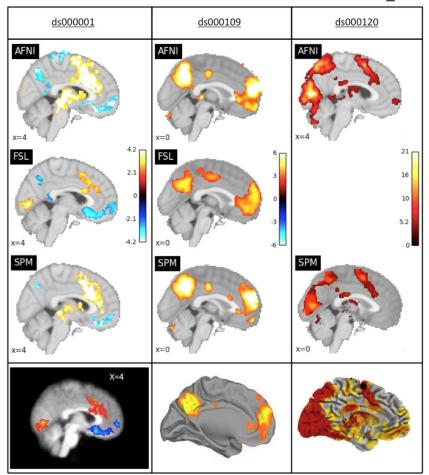


Variability across software

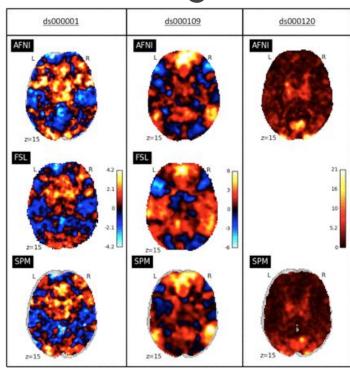
- Reproduced 3 published functional MRI studies
- Using 3 different software



Software Comparison Project

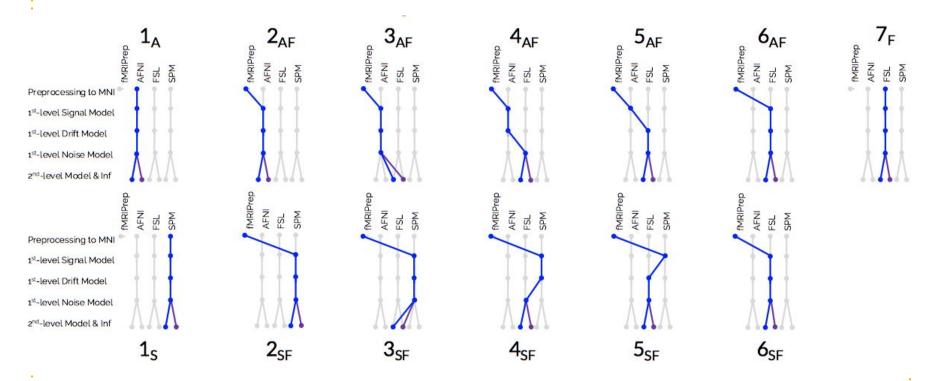


Comparison of the final results



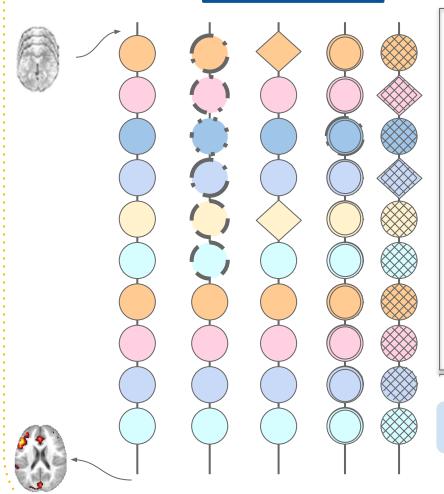
Comparison of the statistic maps

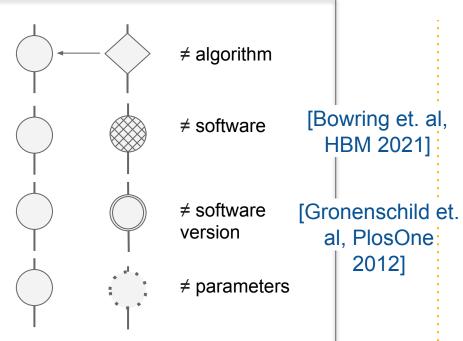
Software Comparison Project 2



Irreproducible with...

Different Methods



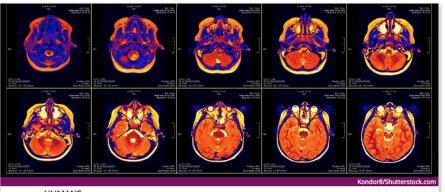


Explanations ???

Irreproducible with...

Different Methods

Explanation 1: There is a bug!



No ground truth to most neuroimaging problems.

Validation is a challenge

HUMANS

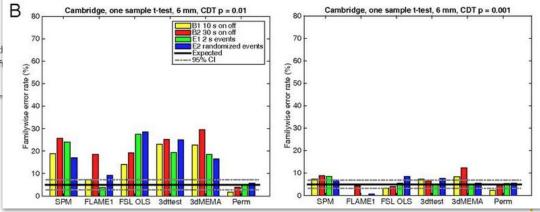
A Bug in FMRI Software Could Invalidate 15 Years of Brain Research

BEC CREW 6 JULY 2016

There could be a very serious problem with the past 15 years of research uman brain activity, with a new study suggesting that a bug in fMRI sof could invalidate the results of some 40,000 papers.

Multiple levels:

- Inadequate methodology (assumption violations)
- Boggus implementation

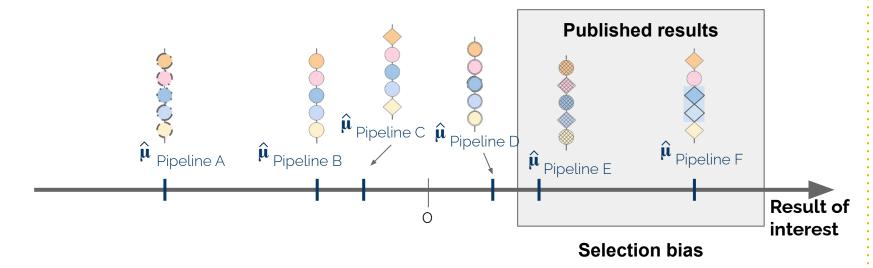


Irreproducible with...

Different Methods

Explanation 2: False positive finding

Vibration of effects

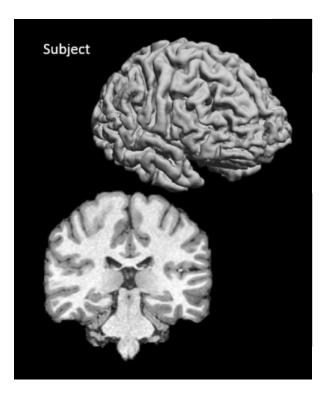


Emerging solutions: Multiverse analyses...

Irreproducible with...

Different Methods

Explanation 3: Different pipelines inform us in different ways



Image

Solutions: Finding common ground for comparisons...

On our way to study the "pipeline space"

- Huge pipeline space : 100 000+ combinaisons
- Which pipelines are suitable to answer a given problem?
 - Expert knowledge
 - But also dependent on characteristics of the dataset under study...
- Which pipelines are **used in the community**? Lack of transparency.
 - Very coarse descriptions in scientific papers, and still limited code sharing.
- Even when code is shared, it is difficult to compare pipeline.
 - Which pipelines are "equivalent"?
 - Implementation of the same method in two different software packages might "hide" crucial implementation details.
- And many more...

Experimentation users-group [Xug] Meetings

March 8, 2022

Beyond computational reproducibility: what does it **mean** for **neuroimaging** results to be **irreproducible**?

Camille Maumet

Thank you!

